3.1665 \(\int \frac{x^{5/2}}{a+\frac{b}{x}} \, dx\)

Optimal. Leaf size=83 \[ \frac{2 b^2 x^{3/2}}{3 a^3}-\frac{2 b^3 \sqrt{x}}{a^4}+\frac{2 b^{7/2} \tan ^{-1}\left (\frac{\sqrt{a} \sqrt{x}}{\sqrt{b}}\right )}{a^{9/2}}-\frac{2 b x^{5/2}}{5 a^2}+\frac{2 x^{7/2}}{7 a} \]

[Out]

(-2*b^3*Sqrt[x])/a^4 + (2*b^2*x^(3/2))/(3*a^3) - (2*b*x^(5/2))/(5*a^2) + (2*x^(7/2))/(7*a) + (2*b^(7/2)*ArcTan
[(Sqrt[a]*Sqrt[x])/Sqrt[b]])/a^(9/2)

________________________________________________________________________________________

Rubi [A]  time = 0.0355053, antiderivative size = 83, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 4, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.267, Rules used = {263, 50, 63, 205} \[ \frac{2 b^2 x^{3/2}}{3 a^3}-\frac{2 b^3 \sqrt{x}}{a^4}+\frac{2 b^{7/2} \tan ^{-1}\left (\frac{\sqrt{a} \sqrt{x}}{\sqrt{b}}\right )}{a^{9/2}}-\frac{2 b x^{5/2}}{5 a^2}+\frac{2 x^{7/2}}{7 a} \]

Antiderivative was successfully verified.

[In]

Int[x^(5/2)/(a + b/x),x]

[Out]

(-2*b^3*Sqrt[x])/a^4 + (2*b^2*x^(3/2))/(3*a^3) - (2*b*x^(5/2))/(5*a^2) + (2*x^(7/2))/(7*a) + (2*b^(7/2)*ArcTan
[(Sqrt[a]*Sqrt[x])/Sqrt[b]])/a^(9/2)

Rule 263

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[x^(m + n*p)*(b + a/x^n)^p, x] /; FreeQ[{a, b, m
, n}, x] && IntegerQ[p] && NegQ[n]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^{5/2}}{a+\frac{b}{x}} \, dx &=\int \frac{x^{7/2}}{b+a x} \, dx\\ &=\frac{2 x^{7/2}}{7 a}-\frac{b \int \frac{x^{5/2}}{b+a x} \, dx}{a}\\ &=-\frac{2 b x^{5/2}}{5 a^2}+\frac{2 x^{7/2}}{7 a}+\frac{b^2 \int \frac{x^{3/2}}{b+a x} \, dx}{a^2}\\ &=\frac{2 b^2 x^{3/2}}{3 a^3}-\frac{2 b x^{5/2}}{5 a^2}+\frac{2 x^{7/2}}{7 a}-\frac{b^3 \int \frac{\sqrt{x}}{b+a x} \, dx}{a^3}\\ &=-\frac{2 b^3 \sqrt{x}}{a^4}+\frac{2 b^2 x^{3/2}}{3 a^3}-\frac{2 b x^{5/2}}{5 a^2}+\frac{2 x^{7/2}}{7 a}+\frac{b^4 \int \frac{1}{\sqrt{x} (b+a x)} \, dx}{a^4}\\ &=-\frac{2 b^3 \sqrt{x}}{a^4}+\frac{2 b^2 x^{3/2}}{3 a^3}-\frac{2 b x^{5/2}}{5 a^2}+\frac{2 x^{7/2}}{7 a}+\frac{\left (2 b^4\right ) \operatorname{Subst}\left (\int \frac{1}{b+a x^2} \, dx,x,\sqrt{x}\right )}{a^4}\\ &=-\frac{2 b^3 \sqrt{x}}{a^4}+\frac{2 b^2 x^{3/2}}{3 a^3}-\frac{2 b x^{5/2}}{5 a^2}+\frac{2 x^{7/2}}{7 a}+\frac{2 b^{7/2} \tan ^{-1}\left (\frac{\sqrt{a} \sqrt{x}}{\sqrt{b}}\right )}{a^{9/2}}\\ \end{align*}

Mathematica [A]  time = 0.0286505, size = 72, normalized size = 0.87 \[ \frac{2 \sqrt{x} \left (-21 a^2 b x^2+15 a^3 x^3+35 a b^2 x-105 b^3\right )}{105 a^4}+\frac{2 b^{7/2} \tan ^{-1}\left (\frac{\sqrt{a} \sqrt{x}}{\sqrt{b}}\right )}{a^{9/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^(5/2)/(a + b/x),x]

[Out]

(2*Sqrt[x]*(-105*b^3 + 35*a*b^2*x - 21*a^2*b*x^2 + 15*a^3*x^3))/(105*a^4) + (2*b^(7/2)*ArcTan[(Sqrt[a]*Sqrt[x]
)/Sqrt[b]])/a^(9/2)

________________________________________________________________________________________

Maple [A]  time = 0.008, size = 65, normalized size = 0.8 \begin{align*}{\frac{2}{7\,a}{x}^{{\frac{7}{2}}}}-{\frac{2\,b}{5\,{a}^{2}}{x}^{{\frac{5}{2}}}}+{\frac{2\,{b}^{2}}{3\,{a}^{3}}{x}^{{\frac{3}{2}}}}-2\,{\frac{{b}^{3}\sqrt{x}}{{a}^{4}}}+2\,{\frac{{b}^{4}}{{a}^{4}\sqrt{ab}}\arctan \left ({\frac{a\sqrt{x}}{\sqrt{ab}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(5/2)/(a+b/x),x)

[Out]

2/7/a*x^(7/2)-2/5*b*x^(5/2)/a^2+2/3*b^2*x^(3/2)/a^3-2*b^3*x^(1/2)/a^4+2*b^4/a^4/(a*b)^(1/2)*arctan(a*x^(1/2)/(
a*b)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(5/2)/(a+b/x),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.82599, size = 366, normalized size = 4.41 \begin{align*} \left [\frac{105 \, b^{3} \sqrt{-\frac{b}{a}} \log \left (\frac{a x + 2 \, a \sqrt{x} \sqrt{-\frac{b}{a}} - b}{a x + b}\right ) + 2 \,{\left (15 \, a^{3} x^{3} - 21 \, a^{2} b x^{2} + 35 \, a b^{2} x - 105 \, b^{3}\right )} \sqrt{x}}{105 \, a^{4}}, \frac{2 \,{\left (105 \, b^{3} \sqrt{\frac{b}{a}} \arctan \left (\frac{a \sqrt{x} \sqrt{\frac{b}{a}}}{b}\right ) +{\left (15 \, a^{3} x^{3} - 21 \, a^{2} b x^{2} + 35 \, a b^{2} x - 105 \, b^{3}\right )} \sqrt{x}\right )}}{105 \, a^{4}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(5/2)/(a+b/x),x, algorithm="fricas")

[Out]

[1/105*(105*b^3*sqrt(-b/a)*log((a*x + 2*a*sqrt(x)*sqrt(-b/a) - b)/(a*x + b)) + 2*(15*a^3*x^3 - 21*a^2*b*x^2 +
35*a*b^2*x - 105*b^3)*sqrt(x))/a^4, 2/105*(105*b^3*sqrt(b/a)*arctan(a*sqrt(x)*sqrt(b/a)/b) + (15*a^3*x^3 - 21*
a^2*b*x^2 + 35*a*b^2*x - 105*b^3)*sqrt(x))/a^4]

________________________________________________________________________________________

Sympy [A]  time = 20.7491, size = 136, normalized size = 1.64 \begin{align*} \begin{cases} \frac{2 x^{\frac{7}{2}}}{7 a} - \frac{2 b x^{\frac{5}{2}}}{5 a^{2}} + \frac{2 b^{2} x^{\frac{3}{2}}}{3 a^{3}} - \frac{2 b^{3} \sqrt{x}}{a^{4}} - \frac{i b^{\frac{7}{2}} \log{\left (- i \sqrt{b} \sqrt{\frac{1}{a}} + \sqrt{x} \right )}}{a^{5} \sqrt{\frac{1}{a}}} + \frac{i b^{\frac{7}{2}} \log{\left (i \sqrt{b} \sqrt{\frac{1}{a}} + \sqrt{x} \right )}}{a^{5} \sqrt{\frac{1}{a}}} & \text{for}\: a \neq 0 \\\frac{2 x^{\frac{9}{2}}}{9 b} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(5/2)/(a+b/x),x)

[Out]

Piecewise((2*x**(7/2)/(7*a) - 2*b*x**(5/2)/(5*a**2) + 2*b**2*x**(3/2)/(3*a**3) - 2*b**3*sqrt(x)/a**4 - I*b**(7
/2)*log(-I*sqrt(b)*sqrt(1/a) + sqrt(x))/(a**5*sqrt(1/a)) + I*b**(7/2)*log(I*sqrt(b)*sqrt(1/a) + sqrt(x))/(a**5
*sqrt(1/a)), Ne(a, 0)), (2*x**(9/2)/(9*b), True))

________________________________________________________________________________________

Giac [A]  time = 1.09908, size = 95, normalized size = 1.14 \begin{align*} \frac{2 \, b^{4} \arctan \left (\frac{a \sqrt{x}}{\sqrt{a b}}\right )}{\sqrt{a b} a^{4}} + \frac{2 \,{\left (15 \, a^{6} x^{\frac{7}{2}} - 21 \, a^{5} b x^{\frac{5}{2}} + 35 \, a^{4} b^{2} x^{\frac{3}{2}} - 105 \, a^{3} b^{3} \sqrt{x}\right )}}{105 \, a^{7}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(5/2)/(a+b/x),x, algorithm="giac")

[Out]

2*b^4*arctan(a*sqrt(x)/sqrt(a*b))/(sqrt(a*b)*a^4) + 2/105*(15*a^6*x^(7/2) - 21*a^5*b*x^(5/2) + 35*a^4*b^2*x^(3
/2) - 105*a^3*b^3*sqrt(x))/a^7